Grassroots Approach to Self-management in Large-Scale Distributed Systems
نویسندگان
چکیده
Traditionally, autonomic computing is envisioned as replacing the human factor in the deployment, administration and maintenance of computer systems that are ever more complex. Partly to ensure a smooth transition, the design philosophy of autonomic computing systems remains essentially the same as traditional ones, only autonomic components are added to implement functions such as monitoring, error detection, repair, etc. In this position paper we outline an alternative approach which we call “grassroots self-management”. While this approach is by no means a solution to all problems, we argue that recent results from fields such as agent-based computing, the theory of complex systems and complex networks can be efficiently applied to achieve important autonomic computing goals, especially in very large and dynamic environments. Unlike traditional compositional design, in the grassroots approach, desired properties like self-healing and self-organization are not programmed explicitly but rather “emerge” from the local interactions among the system components. Such solutions are potentially more robust to failures, are more scalable and are extremely simple to implement. We discuss the practicality of grassroots autonomic computing through the examples of data aggregation, topology management and load balancing in large dynamic networks.
منابع مشابه
DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملGroupware Adoption in a Distributed Organization: Grassroots vs. Management Mandate
Typically, the success of a collaboration technology depends on its adoption by all participants in the collaboration. But as organizations become more distributed (Castells, 1996), the challenge increases to achieve uniform adoption across geographic distance, and across organizational boundaries. In an earlier study, Mark and Poltrock (2001) discovered that the rapid and widespread adoption o...
متن کاملE2DR: Energy Efficient Data Replication in Data Grid
Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance improvements driven by the demand of client's applications in scientific and business domai...
متن کاملSelf-Starting Control Chart and Post Signal Diagnostics for Monitoring Project Earned Value Management Indices
Earned value management (EVM) is a well-known approach in a project control system which uses some indices to track schedule and cost performance of a project. In this paper, a new statistical framework based on self-starting monitoring and change point estimation is proposed to monitor correlated EVM indices which are usually auto-correlated over time and non-normally distributed. Also, a new ...
متن کامل